Preliminary study of a 100 kWe space reactor concept for exploration missions

Elisa CLIQUET, Jean-Marc RUAULT ¹, Jean-Pierre ROUX, Laurent LAMOINE, Thomas RAMEE ², Christine POINOT-SALANON, Alexey LOKHOV, Serge PASCAL ³)

CNES Launchers Directorate, Evry, France
 AREVA TA, Aix en Provence, France
 CEA DEN/DM2S, F-91191 Gif-sur-Yvette, France

CENTRE NATIONAL D'ÉTUDES SPATIALES

NETS 2011

Overview

- Requirements
- Methodology of the study
- Technologies selected for final trade-off
- Reactor trade-off
- Conversion trade-off
- Critical technologies and development philosophy
- Conclusion and perspectives

CNES Directorate of Launchers

- Space transportation division of the French space agency
- Responsible for the development of DIAMANT, ARIANE 1 to 4, ARIANE 5, launchers
- System Architect for the Soyuz at CSG program
- Development of VEGA launcher first stage (P80)
- Future launchers preparation activities
 - Multilateral and ESA budgets
 - To adapt the current launchers to the needs for 2015-2020
 - To prepare launcher evolutions for 2025 2030, if needed
 - To prepare the new generation of expandable launchers (2025-2030)
 - To prepare the long future after 2030 with possible advanced launch vehicles
- Future space transportation prospective activities, such as
 - Exploration needs (including in particular OTV missions)
 - Advanced propulsion technologies investigation

General context

Background

- Last French studies on space reactors :
 - ERATO (NEP) in the 80's,
 - MAPS (NTP) in the 90's
 - OPUS (NEP) 2002-2004

Since then

- Nuclear safe orbit to be taken into account
- Progress in solar cells
- \rightarrow interest of nuclear electric propulsion for exploration application with high payload, high $\Delta {\rm V}\,$ requesting very high power
- French know-how and background in ground and on-board nuclear reactors
- European launch capabilities

Requirements

- Study is limited to power generation system (reactor, shielding, conversion, radiators)
- Study is not dedicated to a specific mission

Main requirements

- 100kWe
- Specific mass goal \leq 30 kg/kW
- Fitting under Ariane 5 fairing
- <u>Compatible with a mid-term development timeframe</u>
- 3 years of operation at full power and 10 years of mission
- Criteria for technology selection
 - 1. specific mass, cost and operating versatility
 - 2. reliability and safety
 - 3. maturity of technologies
 - 4. European independence

Methodology of the study

- Screening of possible technologies and system options (supported by large bibliography)
- 2. Preliminary selection of technologies (see criteria)
- 3. Simplified modeling of candidates technologies
- 4. Trade-off at system level based on coupling of those models
- 5. Preliminary design of two options
 - Gas cooled reactor
 - Liquid metal cooled reactor

Technologies selected for trade-off

Reactor : either 1700kWth (low efficiency conversion) or 350 KWth

Coolant	cladding	Moderator (if any)	Fuel
Na-K (1100K)	Steel	ZrH ₂	UC 93% UO ₂ 93% (UC 19,75%) (UO ₂ 19,75%)
⁷ Li (1500K)	Mo-Re	(fast spectrum)	UC 93% (UC 19,75%)
He-Xe (1500K)	Mo-Re	BeO or Fast spectrum	UC 93% (UC 19,75%) UO ₂ 93%

• Conversion :

- Static option: thermoelectric
 - La₂Te₃
 - Si-Ge
- Dynamic option: Brayton cycle
- Radiators: heat pipes or gas circulation

CORS Conversion system trade-off for thermoelectric

AREVA

<u>A</u>

Tc = 1200K

Various temperature and materials investigated to optimize mass

Example of result obtained with simplified model

Conversion system trade-off for Brayton

- Model for cycle based on
 - Perfect gas classic relations
 - Abaqus for main components
- Model for radiators

cnes

AREVA

- 1/T³ law (fluid circulation)
- Allows to estimate impact of operating temperatures on mass

And the winners are..

Liquid metal cooled reactor with thermoelectric conversion

Core

- Highly enriched UO₂ needles
- Fast spectrum
- Li cooled (Heat pipes with NbZr wall)
- Reactivity control drums: Be-B₄C
- Core to be separated in subcritcal parts in case of launch failure

 \rightarrow reactor + core : 13kg/kW

Conversion :

- 187 heat pipes x 10 Units of 20 thermoelements (Si-Ge)
- Optimized leg length
- Cold heat pipes K
- \rightarrow reactor + core + conversion : 22.6kg/kW

 \rightarrow global system mass (including PMAD& miscellaneous) expected around 35 kg/kW

Gas cooled reactor with direct Brayton conversion

A Areva

cnes

- Core (based on previous Opus study)
 - Highly enriched UO₂
 - BISO particules in graphite matrix
 - Fast spectrum
 - 4 separable sub-criticical parts for safety at launch

Reactivity control : mobile shutter in Be, main reflectors in BeO

 \rightarrow reactor + core : 16kg/kW

- Conversion
 - 2 turbines+heat exchanger for 100%
 - 2 radiators designed for 50%
 - Heat exchanger for mass optimisation (950K->550K)

(950K->550K) \rightarrow reactor + core + conversion (including redundancy) : 34kg/kW

 \rightarrow system mass (including PMAD) expected around 40 kg/kW

Critical technologies and development philosophy

Critical technologies

- General :
 - Very high temperatures required whatever the solution
 - Command mechanisms (high temperature and high reliability)
 - Fuel assemblies
 - Radiators
 - Specific instrumentation
- Gas cooled
 - Gas turbine
- Liquid cooled
 - Heat pipe performances

Development philosophy of such a system

- Conversion technology mock-ups with non nuclear heat source to validate critical aspects
- Core prototype for fuel qualification
- Full system on-ground prototype
- Final flight system

Conclusion & perspectives

- This study allowed to evaluate feasibility and performance of a European solution at 100 kWe for mid-term
- Similar specific mass for both concepts between 35-40kg/kW (taking into account large uncertainties)
 - Fully static (TEC) seems better for this power level but has limited growth potential
 - Brayton has a higher growth potential

Other studies on-going :

- Trade-off candidates for high power electric thrusters (under study at SNECMA under CNES contract)
- On-going study for higher power reactors (MW level or more)
- Preparation of a European forum on high power nuclear electric propulsion to identify competencies and cooperation opportunities
- Performance analysis for fast mass transfers to derive requirements for a NEP system
 (2 papers to be published at EUCASS conference in St Petersbourg in July)

Thank you for your attention