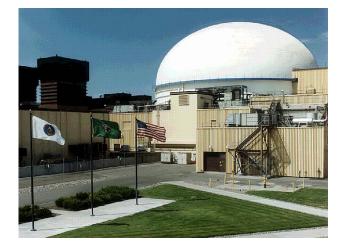


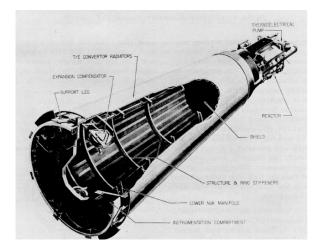
The Path Forward for Fission Power Systems

What Are The Critical Building Blocks?

SAMIT K. BHATTACHARYYA

RENMAR Enterprises, Inc


Technical and Management Services


Introduction

- Framing the Problem Fission Power Systems
 - Demonstrated to work on Earth
 - Have been operated in Space
 - Known to enhance exploration/base capabilities

So why have they not been used?

 Need to understand and address issues

MAJOR ISSUES

- Demanding Requirements Imposed
- Long time-constant for Nuclear Development
- No "base technology" program
- No "compelling" missions; public indifference
- No sustained space nuclear program
- Perception of increased risk with nuclear
- Government Funding Complications
- No High Level Champion

APPROACH

Ideally

Follow a long term strategic vision Sustained technology development Off-ramps to deploy systems to match mission needs Feedback from operational experience Continuous upgrade of capabilities

• Practically

Adapt to realities of priorities, budgets Use Critical Building Blocks in scaled down vision

Critical Building Blocks

<u>Reformulate Strategy</u>

Long term view and commitment Start Modest

Bootstrap capabilities upwards

Modest Initial Mission

Goal is to initiate process No attempt to prove all attributes

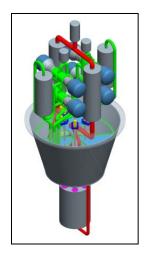
Benign System Requirements

Corollary to above Very high probability of success Significant margins

Large Existing Data Base

Nearly full test matrix Minimize development program Maximize probability of success

Use of SOA Design Methods


> Validated against operating reactors

>Use of latest computing/simulation

<u>Robust, Flexible Reactor</u>
<u>Designs</u>

> Large Design/Safety Margins> Adaptable Control System


<u>Maximize Non-</u> <u>Nuclear Testing</u>

> Component Development

> Mechanical/thermal properties

- > Reactor Thermal Simulator
- > Thermo-mechanical Couplings
 - > Integrated Systems Tests

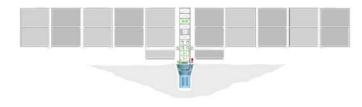

Focused Nuclear Testing

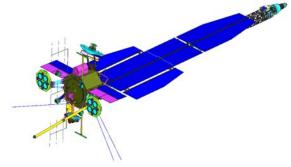
Confirmatory fuel/clad/materials irradiations Confirmatory materials rad exposure Cold Criticals (criticality, control worths etc) Hot Criticals

Acceptance Testing (Criticality, control motion)

Full-up Ground Test?

Incremental data generation/risk reduction Incremental cost/risk incurred




In-situ Startup as part of Development

Methodical Approach-to-critical Verify control/safety parameters Fine tune control algorithms

Use Subsequent Missions

Evaluate Operational Data Incremental Technology Development Bootstrap capabilities up

<u>SUMMARY</u>

Use of Subsequent Missions

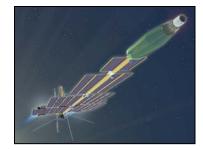
In-Situ Startup Development Item

Full-up Ground Test?

Focused Nuclear testing

Maximize non-nuclear testing

Robust Flexible Reactor Design


Use of SOA Design Methods

Large Existing Data Base

Benign System Requirements

Modest Initial Mission

Reformulate Strategy

