The Path Forward for Fission Power Systems

What Are The Critical Building Blocks?

SAMIT K. BHATTACHARYYA

RENMAR Enterprises, Inc
Technical and Management Services
Introduction

• Framing the Problem
 Fission Power Systems
 - Demonstrated to work on Earth
 - Have been operated in Space
 - Known to enhance exploration/base capabilities

So why have they not been used?

• Need to understand and address issues
MAJOR ISSUES

• Demanding Requirements Imposed
• Long time-constant for Nuclear Development
• No “base technology” program
• No “compelling” missions; public indifference
• No sustained space nuclear program
• Perception of increased risk with nuclear
• Government Funding Complications
• No High Level Champion
APPRAOCH

• Ideally
 Follow a long term strategic vision
 Sustained technology development
 Off-ramps to deploy systems to match mission needs
 Feedback from operational experience
 Continuous upgrade of capabilities

• Practically
 Adapt to realities of priorities, budgets
 Use Critical Building Blocks in scaled down vision
Critical Building Blocks

• Reformulate Strategy
 Long term view and commitment
 Start Modest
 Bootstrap capabilities upwards

• Modest Initial Mission
 Goal is to initiate process
 No attempt to prove all attributes
Critical Building Blocks (Cont)

• **Benign System Requirements**

 Corollary to above

 Very high probability of success

 Significant margins

• **Large Existing Data Base**

 Nearly full test matrix

 Minimize development program

 Maximize probability of success
Critical Building Blocks (Cont)

- **Use of SOA Design Methods**
 - Validated against operating reactors
 - Use of latest computing/simulation

- **Robust, Flexible Reactor Designs**
 - Large Design/Safety Margins
 - Adaptable Control System
Critical Building Blocks (Cont)

- **Maximize Non-Nuclear Testing**
 - Component Development
 - Mechanical/thermal properties
 - Reactor Thermal Simulator
 - Thermo-mechanical Couplings
 - Integrated Systems Tests
Critical Building Blocks (Cont)

• **Focused Nuclear Testing**
 - Confirmatory fuel/clad/materials irradiations
 - Confirmatory materials rad exposure
 - Cold Criticals (criticality, control worths etc)
 - Hot Criticals
 - Acceptance Testing (Criticality, control motion)

• **Full-up Ground Test?**
 - Incremental data generation/risk reduction
 - Incremental cost/risk incurred
Critical Building Blocks (Cont)

• **In-situ Startup as part of Development**
 Methodical Approach-to-critical
 Verify control/safety parameters
 Fine tune control algorithms

• **Use Subsequent Missions**
 Evaluate Operational Data
 Incremental Technology Development
 Bootstrap capabilities up
SUMMARY

Reformulate Strategy

Focused Nuclear testing

Benign System Requirements

Large Existing Data Base

Use of SOA Design Methods

Robust Flexible Reactor Design

Maximize non-nuclear testing

In-Situ Startup Development Item

Full-up Ground Test?

Use of Subsequent Missions

Modest Initial Mission

Reformulate Strategy

Use of Subsequent Missions

In-Situ Startup Development Item

Full-up Ground Test?

Focused Nuclear testing

Maximize non-nuclear testing

Robust Flexible Reactor Design

Use of SOA Design Methods

Large Existing Data Base

Benign System Requirements

Modest Initial Mission

Reformulate Strategy