Future Supply of ²³⁸Pu for Radioisotope Power Systems

Bob Wham whamrm@ornl.gov, 865-576-7783 Alice Caponiti, DOE/NE-43

2011 Nuclear & Emerging Technologies for Space

Albuquerque, New Mexico

February 7, 2011

Many Manufacturing and Assembly Activities Are Required for Radioisotope Power Systems

Approach for ²³⁸Pu Supply Program

²³⁸Pu was Supplied Using the Weapons Production Infrastructure at SRS

- Irradiation of neptunium oxide mixed with aluminum powder in aluminum clad targets to produce ²³⁸Pu (~6 vol.% NpO₂)
- Target fabrication was based on larger (~3" O.D., ~12' long) targets that were designed for K reactor, a heavy water moderated ²³⁹Pu production reactor
- Reactor target volume allowed large batches of ²³⁸Pu to be made in a single campaign (~12 kg batches)
- H-canyon was used for recovery of ²³⁸Pu as product and ²³⁷Np for recycle
- K reactor has been shut down; weapons production halted
- Restarting production will require use of existing reactors and infrastructure

Reactor Characteristics Desired for ²³⁷Np Conversion to ²³⁸Pu

Characteristic	Desired to maximize ²³⁸ Pu	Desired to minimize ²³⁶ Pu impurity
Neutron spectrum	High thermal flux	Minimize high energy flux ¹
Photon spectrum	Large diameter	Minimize high energy flux ²
Target size	Maximize loading	Small diameter
Neptunium loading		Minimize loading

Notes:

- 1. Increasing the water or other moderator content in the test position can augment natural highenergy neutron flux suppression in a thermal reactor.
- 2. High energy photon flux can be suppressed by avoiding or minimizing materials with high energy photon yields and reduced by incorporating photon shielding materials in the test position.

Cross Section of DOE Reactors Showing Irradiation Facilities

Cross section of the INEEL/Advanced Test Reactor depicting irradiation facilities

High Flux Isotope Reactor (HFIR)

Target Design has Stepped Through 3 of 4 Phases

7 Managed by UT-Battelle for the U.S. Department of Energy

A Processing Flowsheet for ²³⁸Pu Recovery was Developed to Optimize Throughput and Minimize Footprint

<u>Challenges:</u>

- Design targets; fabricate and irradiate ~500 targets/year
- Optimize or enhance existing chemical processing equipment to recover needed quantity of ²³⁸Pu
- Product purity of recovered materials and purification
- Waste disposition

REDC Hot Cells Have Unique Processing Capabilities

Facilities contain laboratory, glove box, and engineering-scale hot cell facilities

Hot cells were designed to handle alpha, beta-gamma, and neutron-emitting radionuclides

Process equipment in place to dissolve, separate, recover and purify heavy element products and dispose of fission product wastes

Fully remotely operated and maintained

In-house analytical chemistry to support isotope production, process development, and R&D activities

Currently operating with approved DOE Category 2 Safety Basis

Summary of Analyses to Date Show That ²³⁸Pu Supply Can be Met with Existing Facilities

- ²³⁸Pu supply of 1.5–2kg can be met with existing reactors and hot cell facilities
- ²³⁶Pu content will be higher than historical values
- Target development and preparing for irradiated target processing should proceed as rapidly as possible

QUESTIONS?

11 Managed by UT-Battelle for the U.S. Department of Energy