NETS-2015, Albuquerque, NM February 23-26, 2015

#### Exceptional service in the national interest



SAND 2015-1238C



# High-Temperature Mechanical Properties of a DOP-26 Iridium Alloy under Impact Loading

Bo Song, Kevin Nelson, Ronald Lipinski, John Bignell

G. B. Ulrich, E. P. George

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP





#### Outline

- Background
- Kolsky bar techniques for dynamic characterization of materials
  - High-temperature Kolsky compression bar technique
  - High-temperature Kolsky tension bar technique
- Dynamic high-temperature characterization of iridium
  - In compression
  - In tension
- Experimental Results
- Summary
- Acknowledgments

### Background



| 1<br>11A            |                         |                                              |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dorid               | odio                      | Tal                 | hla                  | of th                     | A FI                    | ome                          | ante                   |                                |                                |                        | _   | 18                |                                            |                              |                                        |
|---------------------|-------------------------|----------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|---------------------|----------------------|---------------------------|-------------------------|------------------------------|------------------------|--------------------------------|--------------------------------|------------------------|-----|-------------------|--------------------------------------------|------------------------------|----------------------------------------|
| 11A                 | 2                       |                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CIN                 | ouic                      |                     |                      | / ui                      |                         | enic                         | 13                     | 14                             | 15                             | 16                     | 6   | Phy               | sical properties                           |                              | Miscellanea                            |
| Hydrogen<br>7,0079  | IIA<br>2A               |                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                           |                     |                      |                           |                         |                              | IIIA<br>3A             | IVA<br>4A                      | VA<br>5A                       | 6A<br>8                | A   | Phase             | solid                                      | Crystal structure            | face-centered cubic                    |
| Lation              | Be                      |                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                           |                     |                      |                           |                         |                              | B                      | C<br>Cattor<br>12011           | N<br>Nitrapen<br>14.00074      | 0<br>0xya<br>15.99     | 2   | Density           | 22.56 g·cm <sup>-3</sup>                   | -                            |                                        |
| Na<br>Bastar        | Magnesses               | 3<br>111B<br>3B                              | 4<br>IVB<br>4B              | 5<br>VB<br>5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>VIB<br>6B      | 7<br>VIIB<br>7B           | 8                   | 9<br>- VIII          | 10                        | 11<br>18<br>18          | 12<br>IIB<br>2B              | Aureiture<br>26.021530 | 14<br>Si<br>Stitum<br>Stitutes | 15<br>Pheepherse<br>30 9777802 | 16<br>54%              | B   | (near r.t.)       |                                            |                              | a a                                    |
| <sup>19</sup> K     | Ca                      | <sup>21</sup> Sc <sup>22</sup>               | <b>Ti</b> <sup>23</sup>     | V 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cr 2                | Mn                        | Fe                  | Co                   | <sup>28</sup> Ni          | <sup>29</sup> Cu        | <sup>30</sup> Zn             | Ga                     | <sup>32</sup> Ge               | <sup>33</sup> As               | 34<br>Se               | e l | Liquid density at | 19 g·cm <sup>-3</sup>                      | Magnetic                     | paramagnetic <sup>[1]</sup>            |
| 37<br>Rb            | 38<br>Sr                | 39 40                                        |                             | Nb 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo 4                | <sup>3</sup> Тс           | Ru                  | 45<br>Rh             | 46<br>Pd                  | 47<br>Ag                | 48<br>Cd                     | 49<br>In               | 50<br>Sn                       | 51<br>Sb                       | 52<br>Te               | e   | m.p.              |                                            | ordering                     |                                        |
| S5                  | Deveture<br>87.62       | <sup>Ymturn</sup> 25<br>88.60586<br>57-71 72 | Prostan N<br>P122N 00<br>73 | 1084am Mc<br>2.99834 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BLDA 78             | schneiten<br>66.0072      | Ruthenium<br>101.07 | Rhedbare<br>102,5665 | Paterilan<br>101.42<br>78 | 08ver<br>187.8582<br>79 | Cadmium<br>112.411<br>80     | Indian<br>114,818      | та<br>118.71<br>82             | Artimony<br>121740             | Tatlurk<br>127.0<br>84 | 1.0 | Melting point     | 2739 K, 2466 °C, 4471 °F                   | Electrical                   | (20 °C) 47.1 nΩ·m                      |
| Cashen<br>192,000au | Ba<br>Barkan<br>137:327 | 10.103                                       | HT<br>Internet Tal          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VV<br>Tats as       | Re<br>Iburitum<br>185.207 | Oessize<br>196.23   | 1960<br>1972-22      | Pt<br>Platinum<br>195.08  | AU<br>Geld<br>196,9655  | Hg<br>Marcury<br>200.58      | Thaillian<br>204.3833  | PD<br>Lese<br>2072             | Bi<br>Banut<br>208 98037       | Polosi                 | 0   | Boiling point     | 4701 K, 4428 °C, 8002 °F                   | resistivity                  |                                        |
| Fr                  | Ra                      |                                              | Rf D                        | Db<br>violatin Se<br>(292)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sg                  | Bh<br>Botram<br>204       | Hs                  | Mt Hattadur          | OS<br>Server start        | Rg                      | Cn<br>Coopernatives<br>[277] | Unamerican             | Ununquadur                     | Uup                            |                        |     | Heat of fusion    | 41.12 kJ·mol <sup>-1</sup>                 | Thermal                      | 147 W·m <sup>−1</sup> ·K <sup>−1</sup> |
| and the second      |                         | 57                                           | 58                          | <sup>59</sup> Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>60</sup> Nd    | Pm                        | Sm.                 | 63<br>Et             | -                         | i T                     |                              |                        |                                |                                | 70                     | Ŷ   | Heat of           | 563 kJ·mol <sup>-1</sup>                   | conductivity                 |                                        |
| 2 her               |                         |                                              |                             | 146.90705<br>91<br>Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92                  | 93<br>No                  | 94<br>P11           | 95                   | 1                         | 1                       |                              |                        |                                |                                | 10                     | 02  | vaporization      |                                            | Thermal                      | 6.4 μm/(m·K)                           |
| -                   | 50                      |                                              | A                           | Production of the local division of the loca | Service<br>Service  | an one                    | Constant<br>Second  | 1000                 |                           |                         |                              | -                      |                                |                                | μ                      |     | Molar heat        | 25.10 J·mol <sup>-1</sup> ·K <sup>-1</sup> | expansion                    |                                        |
| - Ale               | A.                      | 134                                          | 7                           | Alkalise<br>Earth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trensition<br>Metai | n Das<br>Met              | sic Ger             | nimetala             |                           |                         | I                            |                        |                                |                                | L                      |     | capacity          |                                            | Speed of sound<br>(thin rod) | (20 °C) 4825 m·s <sup>−1</sup>         |
| 6                   | AT PR                   |                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                           |                     |                      |                           | I                       | rid                          | iur                    | n                              |                                |                        |     |                   |                                            | Young's                      | 528 GPa                                |
| 192.22              |                         |                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                           |                     |                      |                           | modulus                 |                              |                        |                                |                                |                        |     |                   |                                            |                              |                                        |
|                     |                         |                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                           |                     |                      |                           |                         |                              |                        |                                |                                |                        |     |                   |                                            | Shear modulus                | 210 GPa                                |
|                     |                         |                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                           |                     |                      |                           |                         |                              |                        |                                |                                |                        |     |                   |                                            | Bulk modulus                 | 320 GPa                                |

A very hard, brittle, silvery-white <u>transition metal</u> of the <u>platinum family</u>, iridium is the second-<u>densest</u> element (after <u>osmium</u>) and is the most <u>corrosion</u>-resistant metal, even at temperatures as high as 2000 C.

| expansion                    | /                              |
|------------------------------|--------------------------------|
| Speed of sound<br>(thin rod) | (20 °C) 4825 m·s <sup>−1</sup> |
| (unit rou)                   |                                |
| Young's                      | 528 GPa                        |
| modulus                      |                                |
| Shear modulus                | 210 GPa                        |
| Bulk modulus                 | 320 GPa                        |
| Poisson ratio                | 0.26                           |
| Mohs hardness                | 6.5                            |
| Vickers                      | 1760 MPa                       |
| hardness                     |                                |
| Brinell hardness             | 1670 MPa                       |
| CAS registry<br>number       | 7439-88-5                      |

### Background





#### DOP-26 Iridium Alloy (developed by ORNL)

- By weight:
  - 0.3% tungsten to enhance weldability
  - 60-ppm (parts per million) thorium to increase ductility
  - 50-ppm aluminum
- Unique properties
  - High-melting point
  - Good high-temperature strength
  - Good oxidation resistance
  - Compatibility with the fuel and graphitic heatsource components
  - High impact ductility at high temperatures

## Kolsky Bar (Split Hopkinson Bar) Techniques





Sandia

Nationa

## High-Temperature Kolsky Bar Principles in Stational Stationae Stationae Stat





- Avoid "hot" pressure bars
  - Heat specimen individually
  - Hot Specimen/Cold Bars
    - Heat transfer
      - Specimen temperature drops
      - Bar temperature increases thermal gradient in the bars

Cold Contact Time (CCT) is the time during which the "hot" specimen stays in contact with the "cold" pressure bars until being dynamically loaded



# High-Temperature Kolsky Compression Bar



Follansbee et al. @LANL



#### Ramesh, et al. @ JHU











# Additional Challenges for High-Temperature Kolsky Bar Testing of Iridium

- Small/Thin Iridium Specimen
  - Temperature drops very quickly when the specimen starts in contact with cold pressure bars
  - High strength at high temperature
  - High-Temperature Lubrication





### **Compression Test Setup and Procedure**









Sandia National Laboratories

# Compression Test at 1000 s<sup>-1</sup>/750C

Sandia Nationa



# High-Temperature Kolsky Tensile B

- Current high-temperature Hopkinson compression techniques are not applicable to tensile tests
- How?













# **Stress and Strain Measurements**







Semiconductor strain gages – specimen stress measurem (GF: 139 vs. 2 for regular foil strain gage)



# Typical Dynamic High-Temperature Tensile Test



13

# Specimen During and After Dynamic High-Temperature Test





|   |             |              | K3-6-6-2           |               |         |  |  |  |
|---|-------------|--------------|--------------------|---------------|---------|--|--|--|
|   |             |              |                    |               |         |  |  |  |
|   | Initial Mea | surements    | After Measurements |               |         |  |  |  |
|   | (in.)       | (mm)         |                    | (mm)          |         |  |  |  |
|   | 0.03590     | 0.9119       | *                  | 1.3406        |         |  |  |  |
|   | 0.03495     | 0.8877       |                    | Break         |         |  |  |  |
|   | 0.03495     | 0.8877       | *                  | 1.3467        |         |  |  |  |
|   | 0.03495     | 0.8877       |                    | 1.3606        |         |  |  |  |
|   | 0.03485     | 0.8852       |                    | 1.2579        |         |  |  |  |
|   | 0.03505     | 0.8903       |                    |               |         |  |  |  |
| - | ** One or   | both indenta | tions were         | e difficult t | o detec |  |  |  |
| _ | Measur      | ement value  | is suspect         |               |         |  |  |  |
|   | Α           |              |                    |               |         |  |  |  |
|   | Ave         | rage         |                    |               |         |  |  |  |
|   | 0.03511     | 0.89175      |                    |               |         |  |  |  |
|   |             |              |                    |               |         |  |  |  |
|   |             | 3.5725       |                    | 5.3058        | 0.485   |  |  |  |



#### Engineering Compressive Stress-Strain Curves Different Strain Rates and Temperatures



#### **Engineering Tensile Stress-Strain Curves at Different Strain Rates and Temperatures**



Sandia National

# **Tension vs Compression**







#### **Summary**

- Kolsky bar (split Hopkinson bar) techniques have been properly modified to characterize Iridium in compression and tension at high temperatures
- DOP-26 iridium alloy has been dynamically characterized in compression and tension at different strain rates and temperatures
- The DOP-26 iridium has shown significant strain rate and temperature effects
  - Flow stress increases with increasing strain rate but decreases with increasing temperature



#### **Acknowledgments**

This work was sponsored by U.S. DOE Office of Space and Defense Power Systems (NE-75).

• Ryan Bechtel, U.S. Department of Energy

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Oak Ridge National Laboratory is a multi-program research laboratory managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-000R22725.