Nuclear Thermal Propulsion (NTP)
Engine Component Development

Presented to the NETS 2015 Conference
NASA Marshall Space Flight Center
24 Feb 2015
“To extend and sustain human activities beyond LEO, rapid crew transit is required.”

- NASA STMD Technology Roadmap
Engine Development Realities

• ROVER/NERVA was NOT an engine by modern standards
 − Does not meet modern design and demonstration requirements
 − Non-“Flight like” operations and ambiguous parameters (e.g. valve timing, reactor and turbopump start-up transient, etc.)

• Millions of seconds of flight engine experience have been accumulated since ROVER/NERVA

• Mission architecture concepts are often overly optimistic
 − Design variables “firewalled” to optimal performance (e.g. 300:1 vs. 150:1 area ratio nozzles)

• Majority of benchmarked engine design codes that meet human rating requirements are not applicable for NTP
 − Codes are “cheated” to make work

• Fiscal constraints: NTP limited only where absolutely needed
 − Not required for robotic missions
 − National direction (e.g. human Mars mission): single or multi-mission
Honest Limitations Assessment

- Insanity: doing the same thing over and over and expecting different results. - Albert Einstein

- Policies are in place to eliminate HEU for non-defense purposes
 - Reduced Enrichment for Research and Test Reactors
 - Global Threat Reduction Initiative
 - HEU reactors have been and continue to be converted to LEU
 - Law makers stated that HEU reactor usage damages the nation’s position to urge other nations to not use HEU.

- HEU cost excessive
 - Shot-term HEU availability not a concern and has little impact on upfront cost
 - HEU substantially increases long term security, handling, facility and operating costs

- Low NTP duty cycle = low burn-up
 - Reusability not considered for first generation designs since fuel materials will undergo significant degradation

- LEU NOT practical unless an affordable process can be developed to reliably produce 95-98 wt% 184W.
Prioritized Engine Development Criteria

• Affordability
 − One engine concept to meet human Mars mission requirements
 − Maximize in-house development and leverage relevant industry capability
 − Minimize security and processing constraints: LEU

• Practical, Realistic, Robust, Conservative Design
 − Eliminate exotic concepts, materials or processes (except fuel)
 − Eliminate material with inherent susceptibility to failure in NTP environment
 − Utilize existing and projected (within 10 yrs) manufacturing capability
 − Off-the-shelf components where practical (will not drive engine design)

• Conform to established requirement standards
 − NASA human rating: impacts factors of safety and test demonstrations
 − NRC reactor control, safety, and operation criteria

• Performance
 − Differentiate between “must have” vs “nice to have”
 − Reliability primary driver
• Human mission requirements drive engine design
 - L. Kos studies baseline 3 engine cluster, total thrust 75-105 klbf

• Engine Thrust Class
 - NTP T/W not linear with engine size

• Total burn time
 - Lower with higher thrust engine
 - Major impact on engine duty cycle and engine reliability

• NTP engine cost **NOT** linear with thrust
 - Majority of cost is fuel development
 - Decreasing engine size for cost has negligible impact on total cost
 - Subscale flight demos will not be used to fulfill human rating and a second engine will have to be designed and drive up costs

<table>
<thead>
<tr>
<th>Engine Thrust (klb)</th>
<th>Burns (no.)</th>
<th>Total Burn time 2033 (min)</th>
<th>Total Burn time 2033 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>4</td>
<td>101</td>
<td>92</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>73</td>
<td>59</td>
</tr>
</tbody>
</table>

Courtesy L. Koss
Expected Development Plan

FUEL
- DU manufacture, characterization, test (coupon & fuel element)
- DU property measurement
- LEU coupon manufacture
- LEU coupon irradiation
- LEU fuel element manufacture
- LEU fuel element irradiation

ENGINE SYSTEM
- Initial Power Balance
- Power balance using low-fidelity empirical data
- Power Balance using high-fidelity empirical data
- Full-scale non-nuclear cold flow system test

REACTOR PHYSICS
- Component, design, analysis, manufacture
- Low fidelity separate effects tests
- Component, design, analysis, manufacture
- High fidelity separate effects tests
- Component, design, analysis, manufacture
- High fidelity combined effects tests
- Initial Zero Power Critical
- Prototypic Geometry ZPC
- ZPC vs. Temperature

TRL
- 3
- 4
- 5
- 6

Full-scale nuclear engine test
Integrated NTP Development

- **Engine Systems**
 - Reactor Neutronic Analysis
 - Power Balance

- **Reactor**
 - Fuel
 - Tie-tubes
 - Reflector Rings & Control Drums
 - Injectifold
 - Bottom plate
 - Internal Shield

- **Thrust Chamber Assembly**
 - Pressure Vessel
 - Regen Nozzle & Nozzle Extension

- **Turbopump**

- **Propulsion Module**
 - Lines, Ducts, Valves
 - Thrust Vector Control
 - Controller
 - Distance truss

- **Neutronic Model**
- **Parametric Model**
- **Integrated Component Models**
- **155.7 kN (35 lb.) x 3**
Objectives FY15-17

- **Engine System: Power & Neutronic Balance**
 - Steady state
 - Start-up and shut-down transients
 - Reliability requirements

- **Components**
 - Design, analyze, build, and non-nuclear test functional prototypes
 - Injectifold, tie-tubes, reflectors/drums to TRL 5
 - Turbopump, shield, core bottom plate to TRL 3

- Empirically anchor component, fuel, power balance models to reduce uncertainty to address human rating

- Empirical cost and schedule estimates for fuel, component, engine, and processes
Component Example: Injectifold

- Design 7-fuel element subscale prototype
 - Utilize existing tools and identify limitations

- Manufacture
 - Stereolithography (plastic)
 - DLMS (stainless or aluminum)

- Dissimilar metal joining
 - Welding samples of Zircaloy-4 tubes
 - Brazing samples of Zircaloy-4 tubes

- Integration & Assembly
 - Weld/braze Zircaloy-4 tubes to injectifold

- Test
 - Cold flow
 - Hot fire (NTREES)

- Integrate data into NTP specific models
 - Empirically benchmarked
 - Iterative cycle restarts until adequate fidelity obtained
Conclusions

• NTP engine design highly dependent on mission.
• Unlikely that NTP will be developed for missions other than rapid human transit.
• Engine design and component development loosely linked to engine thrust class.
• The majority of the required tools exists to facilitate engine design but do not meet human rating standards
• NTP specific tools require development through both experimental and analytical methods.
Recommendations for Future Work

• Complete prototype component designs
 – Basic analysis
 – Materials selection
 – Manufacture trade space evaluated

• Manufacture Prototypes
 – Subscale to full scale

• Test Prototypes
 – Iterative prototypic operating environment
 – Characterize data for model implementation

• Develop preliminary models
 – Analytical with empirical benchmarking
 – Facilitate second iteration design evolution
Acknowledgements

• The authors would like to thank the CSNR, Robert Hickman, Jim Martin, and Jeremey Kenny of NASA MSFC.

• Funding was provided by the Advanced Exploration Systems – Nuclear Thermal Propulsion project.

• The opinions expressed in this presentation are those of the author and do not necessary reflect the views of NASA or any NASA Project.