Microstructured Semiconductor Neutron Detectors (MSND) and Instrumentation

Semiconductor Materials and Radiological Technologies Laboratory (SMART) Laboratory
Department of Mechanical and Nuclear Engineering
Kansas State University
Manhattan, KS 66506

Tim Sobering, Russell Taylor, David Huddleston

Electronics Design Laboratory
Kansas State University
Manhattan, KS 66506
1. **MSND Recap** – Benefits over thin-film-coated devices.

3. **Helium Replacement (HeRep)** – Direct replacement designs.

4. **Arrayed MSNDs** – Pixelated and large-area neutron detectors.

Thin-Film Coated Neutron Detectors

- Mass-producible, inexpensive, compact, rugged, low-voltage operation.

- **Limited Neutron Efficiency (4-5%)**

Microstructured Semiconductor Neutron Detectors (MSNDs)

- Mass-producible, inexpensive, compact, rugged, low-voltage operation.

- **Greater Neutron Efficiency (>45%)**
1. MSND Recap – Benefits over thin-film-coated devices.

3. Helium Replacement (HeRep) – Direct replacement designs.

4. Arrayed MSNDs – Pixelated and large-area neutron detectors.

6. DSMSNDs – Dual-sided Microstructured Semiconductor Neutron Detectors.
Diode fabrication

- **12** 4cm² MSNDs fabricated per single 4-inch (110)-oriented silicon wafer.
- **56** 1cm² MSNDs per 4-inch wafer.
- Up to **50** wafers can be processed simultaneously.
- Good diffusion in new furnace led to leakage current measurements of \(\sim 5 \text{nA/cm}^2\) at -3V bias.
- Current record for single, un-stacked, device: **30.1±0.5%**
Mounting Fabricated MSNDs

- MSND size has ranged from 0.25 cm2 to 4 cm2.
- Methods for mounting MSNDs to electronics has varied, but typically a disposable intermediate board is used.
Domino (2014)

• A standard modular device that is mass producible and houses one MSND.
• Individual Dominoes can be tiled together to form meter-long strings; strings can then be grouped together to form blades of detectors.
• Powered by a 1-3V input, draws ~3mW, weighs ~9 grams.
• Typically 20% intrinsic thermal neutron detection efficiency; 1:10^6 gamma-rejection ratio.

- IEEE 802.15.4 compliant
- Onboard Atmel 128 processor
- Modular and expandable
- 50,000 cps
- 20-30m indoor range
- 70-100m outdoor range
1. **MSND Recap** – Benefits over thin-film-coated devices.

3. **Helium Replacement (HeRep)** – Direct replacement designs.

4. **Arrayed MSNDs** – Pixelated and large-area neutron detectors.

3He Direct Replacement (HeRep Mk I and Mk II)

- Designed to directly replace a standard 3He proportional counter:
 - 4 atm, 2-in. diameter by 6-in. long.
- Can contain moderator inside of device.
- Strips of MSNDs are arranged to eliminate streaming between strips.
HeRep Mk I (2011)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSND Area</td>
<td>1 cm²</td>
</tr>
<tr>
<td>Num. of MSNDs</td>
<td>64</td>
</tr>
<tr>
<td>Total Act. Area</td>
<td>64 cm²</td>
</tr>
<tr>
<td>Eff. Of MSNDs</td>
<td>7% @ ≥500keV LLD</td>
</tr>
<tr>
<td>Voltage</td>
<td>12V</td>
</tr>
</tbody>
</table>

- Comparing to a **4 atm** ³He tube (a **3800 ng** ²⁵²Cf source was placed **2 m** from the face of each detector and measured for 30 min.

- HeRep was only as good as its weakest diode; there were many diodes present, making setting the LLD difficult.

<table>
<thead>
<tr>
<th>Device</th>
<th>Relative to ³He</th>
</tr>
</thead>
<tbody>
<tr>
<td>³He Tube: HDPE</td>
<td>100.0%</td>
</tr>
<tr>
<td>HeRep Mk I: HDPE</td>
<td>~70 %</td>
</tr>
</tbody>
</table>
HeRep Mk II (2013)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSND Area</td>
<td>4 cm²</td>
</tr>
<tr>
<td>Num. of MSNDs</td>
<td>30</td>
</tr>
<tr>
<td>Total Act. Area</td>
<td>120 cm²</td>
</tr>
<tr>
<td>Eff. Of MSNDs</td>
<td>20% @ ≥500keV LLD</td>
</tr>
<tr>
<td>Voltage</td>
<td>12V</td>
</tr>
<tr>
<td>Power</td>
<td>30mA (Resting); ~130mA (Max)</td>
</tr>
</tbody>
</table>

- Comparing to a **4 atm** \(^3\)He tube (a **60 ng** \(^{252}\)Cf source was placed **1 m** from the face of each detector and measured for 30 min.

- Gamma-ray rejection ratio: ~2-7x10\(^{-5}\), 14 mR/hr

<table>
<thead>
<tr>
<th>Device</th>
<th>Count Rate (cps)</th>
<th>Relative to (^3)He</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3)He Tube: HDPE</td>
<td>17.13±0.099</td>
<td>100.0%</td>
</tr>
<tr>
<td>He-Rep: HDPE</td>
<td>17.60±0.102</td>
<td>102.74 ± 2.65%</td>
</tr>
<tr>
<td>(^3)He Tube: Bare</td>
<td>3.35±0.046</td>
<td>100.0%</td>
</tr>
<tr>
<td>He-Rep: Bare</td>
<td>3.19±0.050</td>
<td>95.15 ± 9.04%</td>
</tr>
</tbody>
</table>
1. **MSND Recap** – Benefits over thin-film-coated devices.

3. **Helium Replacement (HeRep)** – Direct replacement designs.

4. **Arrayed MSNDs** – Pixelated and large-area neutron detectors.

2-Dimensional Array (2011)

- Comprised of 25 thin-film-coated neutron detectors.
 - Used for calibration of diffracted thermal neutron beam.
Arrayed 6x6 Dual-Stacked Design (2011)

- Arrays can be linked together to function as a single larger unit.
 - Devices can read out individually or sum together as a single detector.
 - If one unit becomes inoperable, it can be easily replaced.
Panel Array Mk I (2012)

- 4x4 Array Elements are tiled together to form a modular large-area neutron detector.
- Tested using a 252Cf source with an applied voltage of $\pm 8\text{V}$.
 - Reported count rate of 0.2 cts/s per ng of 252Cf at 2 meters. (215 kcts Per 5 minutes)
Panel Array Mk II (2013)

- Contains 480 4cm2 Dominoes, each with $\epsilon_{th} \approx 15\%$
- Total area, including moderator: 3 ft. x 3 ft.
- Total Thickness: 3 in.
 - HDPE Thickness: 1 in. front, 1.5 in. back (internal).
- Each string is read out individually; summed via software.
Gen. 2 Panel Array – Testing

* Denotes testing in hallway; likely leading to artificial increase in count-rate

<table>
<thead>
<tr>
<th>Distance</th>
<th>Count Rate (s⁻¹)</th>
<th>Count Rate (s⁻¹ ng⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Meter</td>
<td>172.48 ± 0.76</td>
<td>3.15 ± 0.014</td>
</tr>
<tr>
<td>2 Meters</td>
<td>79.57 ± 0.52</td>
<td>1.45 ± 0.009</td>
</tr>
<tr>
<td>5* Meters</td>
<td>24.60 ± 0.21</td>
<td>0.45 ± 0.004</td>
</tr>
<tr>
<td>10* Meters</td>
<td>6.098 ± 0.066</td>
<td>0.111 ± 0.001</td>
</tr>
<tr>
<td>Background Rm2 / Hallway</td>
<td>0.811 ± 0.021</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>0.893 ± 0.022</td>
<td></td>
</tr>
</tbody>
</table>

Panel Array Static Absolute Efficiency

- Detector Response (cps ng⁻¹)
- Source Distance from Detector (m)

![Diagram of panel array and testing setup]
Gen. 2 Panel Array – Testing

- **Angle Test**
 - Panel Array was kept in place and rotated for each test; distance to source was 2 meters.
 - Area corrections were not made.

Panel Array Angular Dependence

<table>
<thead>
<tr>
<th>Angle</th>
<th>Percent of 2 meter measurement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>100 %</td>
</tr>
<tr>
<td>30°</td>
<td>98.70 %</td>
</tr>
<tr>
<td>45°</td>
<td>94.52 %</td>
</tr>
<tr>
<td>60°</td>
<td>75.65 %</td>
</tr>
<tr>
<td>90°</td>
<td>55.73 %</td>
</tr>
</tbody>
</table>
Briefcase Detector

- The briefcase is powered with 12V.
- The current design weighs **21 lbs**. Contains **84 Dominoes** at ~15% efficiency each.
- Data is output via a 5V TTL pulse.
<table>
<thead>
<tr>
<th>Distance</th>
<th>Count Rate (s⁻¹)</th>
<th>Count Rate (s⁻¹ ng⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Meter</td>
<td>29.76±1.16 cps</td>
<td>~0.54</td>
</tr>
<tr>
<td>2 Meters</td>
<td>14.65±0.57 cps</td>
<td>~0.27</td>
</tr>
<tr>
<td>5* Meters</td>
<td>4.39±0.17 cps</td>
<td>~0.08</td>
</tr>
</tbody>
</table>

* Denotes testing in hallway; likely leading to artificial increase in count-rate.
1. **MSND Recap** – Benefits over thin-film-coated devices.

3. **Helium Replacement (HeRep)** – Direct replacement designs.

4. **Arrayed MSNDs** – Pixelated and large-area neutron detectors.

Portable Spectrometer

• Light weight (~10 lbs.) portable neutron spectrometer that is populated with 9-11 Dominoes.
• Spectrometer interrogates a source until a FOM is reduced to where identification can be made.
• FOM is found by comparing response to onboard template matching.
• Efficiency of current design can be greatly improved by implementing more Dominoes.
• Designed For S.A.N.S.
 – Extremely fine resolution
 – 32 Channels
 – >10% Efficient
 – <10^6 Dead-time (sensors)
• Prototype of larger array
 – 32, 64, 1024 Channel
 – Demonstrated: SNS-ORNL
1. **MSND Recap** – Benefits over thin-film-coated devices.

3. **Helium Replacement (HeRep)** – Direct replacement designs.

4. **Arrayed MSNDs** – Pixelated and large-area neutron detectors.

Double-stacking MSNDs

- Neutrons streaming through silicon sidewalls are made incident on a second MSND.
- Thermal neutron absorption efficiency ~93% (53% for single device).
- **42.0±0.25%** intrinsic thermal neutron detection efficiency achieved. (300 keV LLD)

- Difficult to stack properly (misalignment, off rotationally, etc.).
- Device mismatching leads to poor signal integration.
- Double the capacitance, double the leakage current.
Dual-Side Etched MSND Devices (DSMSNDs)

- **Dual-Sided Device Characteristics**
 - Devices are fabricated exactly as single-sided devices.
 - Capable of batch processing; +50 per wafer, 50 wafers per batch capable.
 - High detection efficiency is possible with opposing DSMSND design; >79% intrinsic detection efficiency.
 - Fast charge-collection is possible with some designs; < 100 ns integration time.

Dual-Sided MSND Prototype Future Improvements

- Charge-collection efficiency must be improved
- Device mass-fabrication must be perfected
 - Etching imperfections on front and/or backside can render the diode useless.
- Device depletion is not entirely understood; depletion region may not reach backside contact.
- 4 cm² diodes must be fabricated to increase absolute sensitivity and reduce complexity.

<table>
<thead>
<tr>
<th>Off-Set Dual-Sided MSND, Straight Trench, 6-LiF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{T}{W_{\text{Cell}}}$</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Trench depth $H = 500$ um</td>
</tr>
<tr>
<td>0.10</td>
</tr>
<tr>
<td>0.20</td>
</tr>
<tr>
<td>0.30</td>
</tr>
<tr>
<td>0.40</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>0.60</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>0.80</td>
</tr>
<tr>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Off-Set Dual-Sided MSND, Straight Trench, 10-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{T}{W_{\text{Cell}}}$</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Trench depth $H = 60$ um</td>
</tr>
<tr>
<td>0.10</td>
</tr>
<tr>
<td>0.20</td>
</tr>
<tr>
<td>0.30</td>
</tr>
<tr>
<td>0.40</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>0.60</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>0.80</td>
</tr>
<tr>
<td>0.90</td>
</tr>
</tbody>
</table>
Thank you for your attention.
Questions?

rfronk@ksu.edu

http://www.ksu.edu/smartlab
Discussion Slides
1. The $^{10}\text{B}(n,\alpha)^7\text{Li}$ reaction – inexpensive, good σ, short ranges

 $Q = 2.34 \text{ MeV (94%)} - 1.47 \text{ MeV } \alpha$, 840 keV Li ion
 $Q = 2.78 \text{ MeV (6%)} - 1.78 \text{ MeV } \alpha$, 1.02 MeV Li ion
 $\sigma_{th} = 3840 \text{ barns}$

2. The $^6\text{Li}(n,\alpha)^3\text{H}$ reaction – inexpensive, lower σ, longer ranges

 $Q = 4.78 \text{ MeV (100%)} - 2.05 \text{ MeV } \alpha$, 2.7 MeV ^3H ion
 $\sigma_{th} = 940 \text{ barns}$

3. The $^{157}\text{Gd}(n,\gamma)^{158}\text{Gd}$ reaction – expensive, high σ, short ranges

 Energetic conversion electrons, emits only low energies between 70 keV - 220 keV (low particle yield)
 $\sigma_{th} = 250,000 \text{ barns}$
For Si, the cross over for Compton scattering to dominate interactions above photoelectric is at approximately 60 keV. We usually set the lower level discriminator at or above 5 times this value (> 300 keV) to reduce gamma ray background.

Photoelectrons or Compton electrons with energies above 65 keV have transit lengths in Si >40 microns, a dimension larger than the lateral dimensions of the 6LiF filled trench devices!
Thin-Film Coated Neutron Detectors

- Neutron-converter material converts neutrons into charged reaction products.
- Mass-producible, inexpensive, compact, rugged, low-voltage operation.
- Poor neutron absorption efficiency (<15%).
- Poor charged-particle counting efficiency.

- Limited Neutron Efficiency (4-5%)
Microstructured Semiconductor Neutron Detectors (MSNDs)

- Mass-producible, inexpensive, compact, rugged, low-voltage operation.
- Better neutron absorption efficiency (>52%).
- Better charged-particle counting efficiency.
- **Greater Neutron Efficiency (>45%)**

Energy Deposition
- Increased likelihood of energy deposition by reaction products; increases signal-to-noise ratio.

Neutron Absorption
- Increased neutron absorption increases count rate and therefore detection efficiency.
Anisotropic Chemical (KOH) Wet Etching of (110) Si

- **Benefits**
 - Better Uniformity Across Large Wafers
 - This Leads to Uniform Responses From Each Device in an Array!
 - Batch Wafer Processing (No Limit!)
 - Less Mechanical Damage than ICP RIE
 - 3 Different perforation designs
 - Straight Trench
 - Chevron Trench
 - Rhombus Hole/Pillar
Dual-Sided MSND Prototype Characterization

- Devices are tested for pass/fail prior to 6LiF backfilling based on diode characteristics
 - Leakage current vs. voltage (IV) curves are measured; $\leq 5 \text{nA cm}^{-2}$ at -3 V bias.
 - Capacitance vs. voltage (CV) curves are measured. $\leq 95 \text{pF}$ at -3 V bias.

CV-Testing

- Capacitance leads to weaker output signal as well as poor pre-amp coupling.
- Capacitance $< 150 \text{pF}$ is acceptable.

IV-Testing

- LC leads to high noise levels; difficulty in resolving signal.
- LC $< 50 \text{nA cm}^{-2}$ is typically acceptable.
Sidewall Width vs Trench Width

400 um Trenches, 40 um Pitch

<table>
<thead>
<tr>
<th>Sidewall Width</th>
<th>10 um</th>
<th>12 um</th>
<th>14 um</th>
<th>16 um</th>
<th>18 um</th>
<th>20 um</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trench Width</td>
<td>30 um</td>
<td>28 um</td>
<td>26 um</td>
<td>24 um</td>
<td>22 um</td>
<td>20 um</td>
</tr>
<tr>
<td>Total Eff.</td>
<td>36.33%</td>
<td>35.29%</td>
<td>34.05%</td>
<td>32.61%</td>
<td>30.98%</td>
<td>29.19%</td>
</tr>
<tr>
<td>0.3 MeV LLD</td>
<td>34.04%</td>
<td>33.27%</td>
<td>32.27%</td>
<td>31.09%</td>
<td>29.66%</td>
<td>28.07%</td>
</tr>
<tr>
<td>0.5 MeV LLD</td>
<td>32.29%</td>
<td>31.94%</td>
<td>31.13%</td>
<td>30.12%</td>
<td>28.82%</td>
<td>27.36%</td>
</tr>
</tbody>
</table>

Diagram:
- **400 um Trenches, 40 um Pitch**
- Number of Source Particles (NPS) vs Energy (MeV)
- Lines represent different Sidewall Widths and Trench Widths.

Legend:
- 10 um Sidewall
- 12 um Sidewall
- 14 um Sidewall
- 16 um Sidewall
- 18 um Sidewall
- 20 um Sidewall
MSND Angular Efficiency Comparisons

Uniform parallel neutron beam

Neutron converter material

Semiconductor volume

Graph showing thermal neutron detection efficiency as a function of incident angle (degrees) for area-corrected and intrinsic efficiencies.
DSMSND Angular Efficiency Comparisons

400-um Deep Trenches, 40-um Pitch, 20-um Sidewalls

- MSND Eff.
- DSMSND Eff.
- DSMSND Avg. Eff.

Intrinsic Neutron Detection Efficiency

Incident Beam Angle

0 10 20 30 40 50 60 70 80 90

25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75%
MSND Neutron Testing

- Diffracted thermal neutron beam at KSU TRIGA Mark II Nuclear Reactor
 - Reactor Power – 0 to 500 kW
 - Thermal (0.0253 eV) Neutron Flux: $1.72 \times 10^2 \text{ n cm}^{-2} \text{ s}^{-1} \text{ kW}^{-1}$
 - Calibrated against 3He-Gas Detector

MSND Gamma-ray Sensitivity

- 137Cs source
 - γ-ray Energy: 662 keV
 - 1 meter from MSND
 - Assay: 68.27 mCi
 - Exposure: 21.8 mR hr$^{-1}$
 - 0.08 γ-ray μs$^{-1}$ (per 4-cm2 area)
Neutron Efficiency of 4-cm² MSND Detector

- 4 cm² MSND, 440-µm deep trenches, 10-µs charge integration time.
 - \(30.1 \pm 0.5\%\) at a 650 keV LLD with normal beam incidence.
 - \(37.6 \pm 0.7\%\) at a 650 keV LLD with 45 deg. beam incidence.
Stacked Perforation Design: 10 µs preAmp integration time

Pulse height spectrum taken with a 6LiF-filled microstructured semiconductor neutron detector formed from stacked 1cm2 devices. $42.0 \pm 0.25\%$ at a 300 keV LLD.
Gen. 2 Panel Array – Issues

- **Broken/Weak Wire-bonds**
 - Stresses on wire-bonds led to intermittent noise issues.
 - Could induce problem with heater gun or squeezing device near bond pad.
- **Cause:** Improper wire-bonding technique.
Gen. 2 Panel Array – Issues

- **Solder Pins**
 - Pins were soldered onto DDBs using low-cost lead-free solder.
 - Heating the pin while soldering the DDB to the Domino melted the low-cost solder, lifting the DDB from the board.
 - Pins and low-cost solder were removed and replaced with a ‘solder bump’.
- **Cause:** Poor materials quality.