Time Dependence of Fission Energy Deposition in Nuclear Thermal Rockets

Nuclear and Emerging Technologies for Space 2015
February 24, 2015

Michael Eades, The Ohio State University, Nuclear Engineering Program

Jarvis Caffrey, Oregon State University, Department of Nuclear Engineering & Radiation Health Physics
Question: How much energy do we get per fission?

Answer: Less than most estimates and there is a notable time dependence.
Current Estimates

<table>
<thead>
<tr>
<th>Total recoverable energy from a fission (MeV)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>198-204</td>
<td>General range from nuclear engineering Textbook[1]</td>
</tr>
<tr>
<td>200.00</td>
<td>Value used in many preliminary calculations. Assumption for all fissions in ORIGEN, suggested default for 235U MONTEBURNS version 1.00 [2] [3]</td>
</tr>
<tr>
<td>200.45</td>
<td>The assumption of 1.05 g of 235U equates to MWD of energy</td>
</tr>
<tr>
<td>201.70</td>
<td>ORIGEN2 estimate 235U fission [3]</td>
</tr>
<tr>
<td>200.96</td>
<td>MCNP 6.1 assumption for a fission in 235U in burn up calculations [4]</td>
</tr>
<tr>
<td>201.78</td>
<td>ATR estimation made with ENDF data[5]</td>
</tr>
<tr>
<td>193.41</td>
<td>ENDF/B-VII.1 Total Energy from a 235U fission (no v)</td>
</tr>
<tr>
<td>180.57</td>
<td>ENDF/B-VII.1 Prompt Energy from a 235U fission (no v)</td>
</tr>
</tbody>
</table>
Problem

Do these estimates apply to an NTR?

• No Time Dependence
 – NTRs have a shorter operation than a utility reactor but longer operation than a pulse reactor
 – Fission fragments not in equilibrium
 – ~7% of power is decay heat at time of shut down

• Leakage out of the system
 – NTRs are small and are unreflected on one side

• Different spectrum and core materials
 – ~4% of power is radiative capture
Knowing recoverable energy per fission is fundamental to many nuclear engineering calculations

- Heat deposition
- Shielding
- Decay Heat
- Burnup/\(^{135}\)Xe
- Transients/Control systems
Fission

\[Q_{eff}^f(t) = Q_p^f(t) + Q_d^f(t) \]

\(Q_{eff}^f(t) \) Effective energy absorbed in the reactor after a fission event as of time \(t \) after the fission event.

\(Q_p^f(t) \) Prompt energy absorbed in the reactor within 1 millisecond.
- Fission Fragments
- Prompt gammas and betas
- Non-fission exothermic reactions with prompt neutrons and gammas

\(Q_d^f(t) \) Delayed energy absorbed in the reactor after 1 millisecond.
- Decay of fission fragments
- Delayed neutron interactions
- Decay of activated material
Fission to Power

\[Q_{\text{eff}}^f(t) = Q_p^f(t) + Q_d^f(t) \]

\(t \) is time after the fission event

\[R(t) = \frac{d}{dt} Q_{\text{eff}}^f(t) \]

\(R(t) \) is rate of energy absorption per fission

\[P(T) = \int_0^T R(T - t') F(t') dt' \]

\(T \) is a time along the operational timeline of the reactor

\(P(T) \) is power of the reactor

\(F(T) \) is fission rate
1.) MCNP6 based model specifically for a NTR

2.) A simple analytical model using information available in the literature

3.) ANS decay heat standard combined with the MCNP6 model
Activation Control Card (ACT Card) to estimate $R(t)$ and $Q_{eff}(t)$

Uses CINDER90 database to simulate fission product decay

MCNP model of a Representative NTR

Does not correct for neutron absorption in fission fragments
A LEU W-UO₂ cermet fuel, ZrH₁.₈ moderated rocket using H₂ propellant

Fuel: UO₂-ThO₂-W (56-4-40), 19.75%²³⁵U, 95% TD

Roughly 1 m long and 1 m in dia.
Analytical Model

A simple model based on information available in the literature

Decay heat model from “Nuclear Systems” Todreas

A quoted accuracy of “within a factor of 2”

Q_p^f taken from the ATR paper (188.94 MeV)

\[
R(t) = \begin{cases}
1.889364 \times 10^5 \frac{MeV}{s} & \text{if } t < 0.001 \text{ s} \\
0 \frac{MeV}{s} & \text{if } 0.001 \leq t \leq 10 \text{ s} \\
2.66t^{-1.2} \frac{MeV}{s} & \text{if } 10 \text{ s} < t < 100 \text{ days} \\
0 \frac{MeV}{s} & \text{if } 100 \text{ days} \leq t
\end{cases}
\]

Valid for $t \geq 1$, MCNP6 model used for $t < 1$

Decay of 239U and 237Np and neutron absorption in fission fragments ignored and expected to be negligible

1 sigma uncertainty is ~2% for most points but 15.6% to 4.3% in the first 4 seconds

$$R(t) = \begin{cases} \text{Same as MCNP6 model if } t < 1, & \\ ^{235}\text{U ANSI/ANS-5.1-2005 if } t \geq 1 \end{cases}$$
Results

Rate of Recoverable Fission Energy Deposition

- MCNP6 Burnup Assumption
- ANS Decay Heat Model
- MCNP6 Model
- Analytical Model

\[R(T) \text{(MeV/s)} = \begin{cases} \text{constant} & \text{for } T < 1 \times 10^{-5} \\ \text{decreases to zero} & \text{for } T \geq 1 \times 10^{-5} \end{cases} \]
Results

Effective Recoverable Fission Energy Deposition

- **MCNP6 Burnup Assumption**
- **ANS Decay Heat Model**
- **MCNP6 Model**
- **Analytical Model**

The graph shows the variation of $Q_{\text{eff}}^f(T) \text{ (MeV)}$ with respect to $T \text{ (seconds)}$.
Results

<table>
<thead>
<tr>
<th>Total recoverable energy from a fission (MeV)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>198-204</td>
<td>General range from Nuclear Engineering Textbook[1]</td>
</tr>
<tr>
<td>200.00</td>
<td>Value used in many preliminary calculations.</td>
</tr>
<tr>
<td>200.45</td>
<td>The assumption of 1.05 g of 235U equates to MWD of energy</td>
</tr>
<tr>
<td>201.70</td>
<td>ORIGEN2 estimate 235U fission [4]</td>
</tr>
<tr>
<td>200.96</td>
<td>MCNP 6.1 assumption for a fission in 235U in burn up</td>
</tr>
<tr>
<td>201.78</td>
<td>ATR estimation made with ENDF data[5]</td>
</tr>
<tr>
<td>193.41</td>
<td>ENDF/B-VII.1 Total Energy from a 235U fission [6]</td>
</tr>
<tr>
<td>191.78</td>
<td>MCNP6 model for representative NTR after 1 minute</td>
</tr>
<tr>
<td>200.56</td>
<td>MCNP6 model for representative NTR after 100 days</td>
</tr>
</tbody>
</table>
Results

Reactor Power Profile

\[P(T) \text{ (MW)} \]

\[T \text{ (minutes)} \]
Results

Reactor Power Profile

\[P(T') = \int_{0}^{T} R(T - t')F(t')\,dt' \]

Solve For
Results

Normalized Fission Rate Needed for Power Profile

- **Analytical Model**
- **MCNP6 Model**
- **ANS Decay Heat Model**
- **MCNP6 Burnup Assumption**
Results

Normalized Fission Rate Needed for Power Profile

- Analytical Model
- MCNP6 Model
- ANS Decay Heat Model
- MCNP6 Burnup Assumption
Results

Fractional Difference Between Solutions

- Analytical Model
- MCNP6 Model
- ANS Decay Heat Model
- MCNP6 Burnup Assumption
Discussion

MCNP6 model predicts a fission rate that is at minimum 0.99 and at maximum 1.07 times the default MCNP6 assumption.

Important information for high fidelity models

Fission rate changes by ~1.5% during steady state operation

• May affect the way that radiometric probes predict thermal power
Difference in Models

The NTR is a high leakage system
- 0.67 MeV/fission in gammas and neutrons
- 7.8% of all neutrons (??? MeV/fission if captured)
- ATR model had no leakage

Very different spectrum and core composition than a LWR

Decay heat relations generally agree with in ~15%
Future work

Investigate the effect on Burnup/135Xe and spatial power deposition calculations

More thorough comparison to decay heat estimations
 • ANSI/ANS-5.1-2005
 • ORIGEN2
 • Serpent

Examine effect on calorimetric vs. radiometric power monitors
Questions?

\[Q_{\text{eff}}^f (t_f) = Q_p^f (t) + Q_{\text{d}}^f (t) \]

\[R(t) = Q_{\text{eff}}^f (t) \frac{d}{dt} \]

\[P(T) = \int_0^T R(T - t')F(t') \, dt' \]

This work was partially supported by a NASA Office of the Chief Technologist’s Space Technology Research Fellowship. This work was also made possible by SCCTE/NCPS project.
 and depletion code*, Oak Ridge National Laboratory Report ORNL-5621
 LA-CP-13-00634 (2013)
5. Sterbentz J. W., *Q-value (MeV/fission) Determination for the Advanced Test Reactor*,